DATRON Dynamics

A Race Car in a World of Tractor Trailers

Building Machines for Speed & Efficiency Means Doing Things Differently

Machines for speed & efficiency – but what about weight? I’ve heard it hundreds of times. At trade shows, during demonstrations, in online forums, on social media… It usually goes like this:

Person asks: “How much does this machine weigh?”

I respond: “This DATRON weighs (____) thousand pounds”

Person replies: “That’s it?! My (CNC Brand Here) weighs twice as much!” Or something to that effect.

Honestly, it’s not an unfair question to ask. One of the predominant principles of an accurate CNC machine is having a lot of mass in the assembly. The reasoning behind this is quite simple – the heavier the machine, the more stable it is. Also, the additional mass serves to absorb any vibration created from milling. That’s why it is not uncommon to see large CNC machines with cast iron frames and with weight so immense that it’s necessary to pour a special foundation just to support the heft.

A lot of attention is also paid to the fact that DATRON machines are gantry/bridge style machines, as opposed to the typical “C frame” style so commonly used on Vertical Machining Centers (VMC). This draws comparisons to CNC routers, which are typically lightweight and somewhat flimsy machines built for basic wood and soft material machining. So how can a machine that’s similar to a router possibly stack up to the competition? The answer is simple: a DATRON is designed with a purpose.

Microsoft’s prototype lab features a diversified lineup of high-speed DATRON machines to complement their more traditional vertical milling centers.

Machines for Speed & Efficiency

Confused? Please, allow me to explain. Your typical VMC is designed to do a little bit of everything, from cutting small plastic parts to milling aerospace alloys like Inconel to machining large molds made from tool steel. While this is great in terms of broad capability, it’s not terribly efficient. A machine tool that can cut everything, small or large, soft or hard, is usually not going to be the best at anything. That is where DATRON is different: DATRON AG designs machines intended to make DATRON parts (for examples of good DATRON parts, check out our CNC Milling Applications page).

It’s about having the right tools for the job. I always like to make analogies to get this point across: If you’re a brain surgeon, you need a scalpel, not a machete. A carpenter needs a claw hammer, not a sledgehammer. If you are a race car driver, you need a Porsche, not a Peterbilt. That last one’s my favorite, personally. A semi-truck is fantastic at hauling heavy loads but miserable at handling hairpin turns. If you’ve got the right parts, using a normal VMC instead of a DATRON is like driving a tractor-trailer truck on a race track: You can finish the race, but you’re not taking home the gold.

“Let’s get back to our Porsche analogy. If Porsche were to build machining centers, what would they be like? For starters, they’d be German Engineered, just like DATRON. Natch. But I think they’d also adhere to DATRON’s focus on being unconventional.”

 – Bob Warfield, CNCCookbook.com

So, let’s break down what makes DATRON a race car in the CNC world.

It’s As Heavy As It Needs To Be

First and foremost – it’s worth stating that a DATRON is not a lightweight machine, it’s just not as heavy as a comparable machine from your typical VMC manufacturer. For instance, despite its petite size, a neo weighs over 1,500 lbs. An M8Cube is around 3,000 lbs, an MLCube is nearly 3 tons, and an MXCube weighs as much as both of them, combined. Few can argue that a 4-ton machine is “lightweight”. Most of the machine’s weight is in the primary casting. For the Cube series, that is the machine table, while in the neo, it is the portal. Supporting that is a high-strength, rigid steel frame.

On Cubes, the gantry is critically designed to be as light as possible, while still maintaining high torsional rigidity and stiffness. This emphasis on keeping components as heavy as necessary pays off big when it comes time to machine.

Few put it better than Tim Paul, Product Manager for Fusion 360 CAM at Autodesk.

“Nothing moves like a DATRON”.

Thanks to the weight and rigidity of the components, a DATRON has excellent acceleration capabilities that often outperform the competition. While not impossible for a large, heavy VMC to achieve similar speeds, it subsequently requires much larger motors, more frequent maintenance, and much higher amounts of electrical energy. In the end, a DATRON is designed around the sort of parts it mills best, and thus, does not need to be so vastly overbuilt.

It’s Made From The Right Materials

Extensive analysis was performed on the machine’s construction to achieve the most optimal weight/rigidity ratio.

Another key design decision that helps make DATRON milling machines as rigid as possible is the use of polymer concrete for the table/portal casting. In the VMC industry, the use of cast iron for the frame material is common. It makes sense, after all, since cast iron is heavy and relatively thermally stable. However, cast iron has a bit of a disadvantage when it comes to vibration damping. Vibration damping is essentially the material’s ability to absorb vibration energy instead of transferring the oscillation throughout the structure. Polymer concrete (sometimes referred to as epoxy granite) is far better at absorbing vibration than cast iron or other common base materials.

A good analogy for this is to think of a cymbal on a drum set. The reason it’s made from bronze alloys is because of their poor ability to absorb vibrations – thus, they resonate when you hit them. On a drum set, that’s great, but on a CNC machine, it’s terrible. Excessive vibration can lead to poor surface finish, inaccuracy of the part, and diminished lifetime of machine components. To overcome this issue on a traditional VMC using a cast iron frame, you must rely on adding more mass to counteract the vibration. However, with DATRON, the core structure is reinforced with polymer concrete – adding considerable weight while also having superior vibration-damping properties.

Using High-Speed Machining Strategies

One of the important reasons why a DATRON can be built this way comes down to how you use it. On a traditional machine, low RPM, high torque spindles are commonplace, and the immense cutting forces that are created require a hefty machine to handle the vibration and stresses. DATRON is inherently different from the start – since the machines are focused on specific parts and materials, the spindle choice can be tailored far more suitably, and that changes everything.

The slowest DATRON spindle has a maximum speed of 30,000 RPM, with others going as high as 60,000 RPM. The reasoning behind this is clear – a focus on small cutting tools. Since tools never exceed 1 inch in diameter, the need for low speed and high torque is just not necessary. The smaller a cutting tool gets, the faster you will need to spin it to be efficient. This is another place where a DATRON will make considerable strides over a traditional VMC: when tools are under 1/4”, efficiency starts to taper off quickly. That is also why DATRON develops their own line of cutting tools – to be even more efficient and productive with a high-speed spindle.

Along with efficiency using small tools, a DATRON can leverage its quick acceleration to utilize high-speed machining (HSM) strategies that have become quite popular with modern CAM software (for example – Dynamic Motion from MasterCAMAdaptive Milling from Autodesk). These milling strategies do a great job of reducing the cutting forces generated from pocket milling (especially in tight corners) which can be especially useful for maintaining tool life for small cutters. All machines can benefit from these strategies, but the benefits are even greater on a machine that is purpose-built for high-speed machining.

So, long story short, there are lots of typical VMCs on the market, but a DATRON is not one of them. This is very intentional as DATRON AG designs them from an initial concept for a narrowed scope of work so that they can truly excel in the right applications. As I said, it’s like having a race car in a world of semi-trucks. Are you ready to race? Contact our team and discover how your production can benefit from DATRON’s high-speed CNC solutions.

 

Recommended Products

520 x 420 x 220 mm (20 “ x 16.5 “ x 9 “) (XYZ)
2kwatt liquid chilled spindle up to 40,000 RPM
approx. 700 kg (1,543 lbs.)
Prototype intricate metal parts and small production runs in-house with the CNC system that fits through a standard doorway. Designed for precision prototyping in metal and perfect for a lab environment.
1,020 x 830 x 245 mm (40” x 33” x 10″) (X, Y, Z)
Up to 60,000 RPM machining spindle
approx. 1,300 kg (2,866 lbs.)
Machine parts faster and more efficiently with the high-speed M8Cube. With a working area of 30” x 40” and 60,000 RPM spindle, you are saving time and money.
1,520 mm x 1,150 mm x 245 mm (60” x 45” x 10”) (X, Y, Z)
Up to 60,000 RPM machining spindle
approx. 2,500 kg (5,512 lbs.)
In a world where adaptability and floor space are equally important, you shouldn’t have to choose one or the other. Ideal for milling long aluminum extrusions, sheet material, large parts or machine nested small parts.

Contact Us Today To Learn More About Our High Speed CNC Machines

Our DATRON Experts Help Many Customers Bring Manufacturing In-House. Reach Out To Our Team To See Which Machine And Accessories Are The Right Fit For Your Parts.

0% Financing for 48 Months - SEPTEMBER ONLY

DATRON Dynamics

SEPTEMBER ONLY!
0% Financing for 48 Months

Level-up without breaking the bank

4 datron cnc machines lined up next to each other