Cyber Week Sale On DATRON Tools! Use Code CYBER23 for 15% Off
Complimentary DATRON gift with orders of $1000
For US Customers Only

North America | Global

Drill vs. End Mill? – Some Basic Guidelines

Question: “Should I use a drill or end mill?”

Answer: It depends on what you’re trying to achieve.

When to Use a Drill vs. End Mill

Drill vs. End Mill? If you need to make a lot of holes a drill is probably the way to go.

If you’re making a very small hole, say, less than 1.5mm in diameter, go with a drill. End mills under 1.5mm become increasingly fragile, and subsequently cannot be run as aggressively, as a drill can be.

If you need to make a very deep hole – in excess of 4x your hole diameter, choose the drill. Past this point, chip evacuation can become very difficult with an end mill, which will quickly wreck your tool and your part.

Are you making a lot of holes? Drilling is probably the way to go. In most instances, a drill will best the fastest time you can achieve with an end mill.

Need to make an extremely precise hole? While milling is typically perfectly acceptable, sometimes the tolerances require a drill and a reamer for the perfect finish.

When to Use an End Mill vs. Drill

However, there’s a lot to be said for using an end mill instead.

Drill vs. End Mill? If you need to make a lot of different sized holes, you should probably go with the end mill.

Need to make a big hole? Big holes need big drills and lots of horsepower, this is where helical milling shines. Use an end mill that’s 60-80% the diameter of the hole you’re making to quickly clear out while leaving plenty of room for chips to escape.

Print calls for a flat bottomed hole? Normal drills can’t do that, so you might be better off milling the feature.

Making lots of different size holes? Try to use the end mill, you’ll save time on tool changes and room in your tool changer.

Rapid prototyping? End mills will be appealing for their flexibility. Being adaptable to take on some features that may normally be drilled means you can spend less time CAMing a part and more time making chips.

With either one, there are two simple rules to remember:

Break your chip – don’t try to be a hero and blast through your hole in one go, program a quick retract to get the chip out and let the coolant in.

Turn up the coolant – unless you have through tool coolant, you’re going to want to be sure to turn up the coolant flow and decrease your air pressure. The coolant needs to be able to flow into the hole during your retract. Learn more about DATRON tooling

Recommended Products

520 x 420 x 220 mm (20 “ x 16.5 “ x 9 “) (XYZ)
Up to 40,000 RPM machining spindle
approx. 700 kg (1,543 lbs.)
Prototype intricate metal parts and small production runs in-house with the CNC system that fits through a standard doorway. Designed for precision prototyping in metal and perfect for a lab environment.
1,020 x 830 x 245 mm (40” x 33” x 10″) (X, Y, Z)
Up to 60,000 RPM machining spindle
approx. 1,300 kg (2,866 lbs.)
Machine parts faster and more efficiently with the high-speed M8Cube. With a working area of 30” x 40” and 60,000 RPM spindle, you are saving time and money.
1,520 mm x 1,150 mm x 245 mm (60” x 45” x 10”) (X, Y, Z)
Up to 60,000 RPM machining spindle
approx. 2,500 kg (5,512 lbs.)
In a world where adaptability and floor space are equally important, you shouldn’t have to choose one or the other. Ideal for milling long aluminum extrusions, sheet material, large parts or machine nested small parts.

DATRON Dynamics Is Your DATRON Partner in North America

Our DATRON Experts Help Many Customers Bring Manufacturing In-House. Reach Out To Our Team To See Which Machine And Accessories Are The Right Fit For Your Parts.