All posts by Steve Carter

steve.carter@datron.com'

About Steve Carter

Steve Carter is the Brand Manager at DATRON Dynamics and has been with the company for 11 years. His writing on high-speed machining has been published in trade magazines such as Aerospace Design & Manufacturing, Modern Applications News, Manufacturing Engineering and Tooling & Production.

Sign Engraving with CNC Machine, Including ADA Braille!

Since the equipment our company offers is ideal for sign engraving and processing flat sheet material, we’ve seen the inside of a good number of sign companies over the years. But, walking into Ellis & Ellis Sign Systems in Sacramento, CA becomes a different experience as soon as you pass through the lobby and corporate office of this family-owned business. That’s because the overall size of the place is impressive. Well, it has to be really, considering the work they do – this includes billboards, architectural signage, landmark signs, amusement park signs and even those dazzling neon jobs enticing patrons at the many casinos in Reno. They even made a 16-foot tall Tyrannosaurus Rex, a gigantic Frankenstein and a not so menacing (but still sizable) Curious George for Universal Studios.

Monument sign making is one of the primary focuses of Ellis & Ellis Sign Systems in Sacramento, CA
Monument Sign Making is a focus of Ellis & Ellis which is illustrated by this sign made for Slate Creek Corporate Centre in Roseville, CA

But not everything they do at Ellis & Ellis is so big. Take for example the Braille required for way-finding signs and architectural signage. This is intricate work often done on smaller signs that must be ADA compliant for elements like position and tactile height. Braille can be produced using a variety of different processes. For example, Photopolymer Braille uses UV light and a chemical process to remove negative space material. In contrast, Route-in-Place with Raster Braille is a process where small acrylic beads are mechanically pressed into predrilled holes.

Sign Engraving with ADA Compliant Braille

Having tried both of these processes, Ellis & Ellis experienced significant obstacles as follows:

Photopolymer Braille: First and foremost, the Braille was not completely round and was, therefore, subject to ADA liability. They also found the necessary raw materials to be expensive. Ellis & Ellis Director of Manufacturing, Bill Rogers, explained, “The excessive costs of the materials were compounded by costs associated with the human labor required for processing and finishing.”

Route-in-Place with Raster Braille: Similar to Photopolymer Braille, Ellis & Ellis found that additional human labor was required for finishing in the Raster Braille process because of the excessive glue that remains after tactile copy is placed and engraved. Bill Rogers said, “Additionally, the alcohol, solvents and cleaning products would cause crazing to occur on the acrylic beads which often shattered them.” Plus, they found this process to be limited in terms of surface finish possibilities.

Eventually, Ellis & Ellis decided to research other processes and equipment to produce the intricate ADA compliant Braille they needed to manufacture these way-finding signs. Ultimately, they decided on a DATRON M8 high-speed machining center after demonstrations proved that the machine was not only capable of producing spot-on Braille, but could also perform many other functions – thereby adding flexibility to their shop floor. (See aluminum and acrylic letters at bottom of Blog).

Engraving braille signs to meet ADA requirements led Ellis & Ellis to DATRON to purchase an M8 Engraving machine.
Engraving braille signs was the requirement that led Ellis & Ellis to DATRON and resulted in the purchase of an M8 high-speed milling machine.

Plus, there were other factors involved in their decision. Rogers said, “Well clearly floor space in California has a premium cost associated with it and the DATRON’s footprint fit nicely into the small enclosed space that we designated for this process.” He added, “With the small footprint, it’s amazing that this machine provides such a large work envelope.”

Sign Engraving CNC Machine for Batch Machining

In fact, the DATRON M8 (as well as the newer M8Cube) has a 40” x 32” machining table made of solid polymer concrete that provides exceptional rigidity delivering the accuracy that Ellis & Ellis needs. The large work envelope is not diminished by the 15-station automatic tool changer located at the back of the table. This covered pneumatic unit includes a tool-length sensor which allows Ellis & Ellis to monitor tool life as a means of maintaining a high level of quality. In many cases, the signs that they manufacture are produced in batches and the tool length sensor helps in allowing them to run these parts unattended. Here’s how it works. Within the machine’s control software is a macro program that can be set up to run a tool check after executing a number of lines of code. For instance, a tool check macro can initiate a check after every 500 lines of code. This is known as an “if/then” statement, in other words, “Measure this tool; if the length is shorter than the listed parameter, then change the tool.” As a result, if a tool becomes dull in the middle of running a batch of signs, it is replaced automatically even if the machine operator is not present. This helps to maintain quality and minimize waste.

Sign engraving machine DATRON M8 features a 60,000 rpm spindle, 40" x 30" work area, vacuum chuck and integrated probing.
Sign engraving CNC machine, DATRON M8, features a 60,000 rpm spindle, 40″x30″ work area, vacuum table workholding, and probing for quick job setup and part location.

However, running batches of signs, whether unattended or with the operator present, requires the ability to accommodate and fixture sheet material from which the individual signs are milled. So, Ellis & Ellis was pleased to find that DATRON manufactures their own vacuum table workholding. In the case of their M8 machine, the vacuum chuck is affectionately known as a QuadraMate due to its four independently activated 12” x 18” segments – which can also be simultaneously activated providing a full 24” x 36” of workholding.

Bill Rogers said, “The vacuum table combined with the machine’s integrated probe makes it so easy to set up a job – it’s faster and takes out the element of human error.”

Sign Engraving samples made by Ellis & Ellis Sign Systems on a DATRON M8 high-speed machining center.
Sign engraving samples at Ellis & Ellis show the versatility of the DATRON high-speed milling machine.

That’s because once the operator sets the material on the table, even if it is not situated perfectly straight, the probe takes measurements that compensate for that. In fact, even if there are irregularities in the material such as surface variance, the measurements are fed into the control software and the program is adjusted accordingly. Since Ellis & Ellis performs so much alphanumeric engraving and milling to produce their signs, this guarantees an even depth of those characters even if the material topography is not consistent. According to Rogers, “All of this equates to more efficiency, higher quality, less waste and ultimately cost reduction.”

Sign engraving aluminum and plastic (acrylic) lettering can be performed in batches due to the 40" x 30" work area on the DATRON M8.
Sign engraving in acrylic and plastic was a necessity for Ellis & Ellis and with the DATRON M8 they are also able to run batches of aluminum and acrylic lettering of all shapes and sizes.

The machining center itself is not the only area where DATRON has helped Ellis & Ellis add efficiency to their operation — and Bill Rogers says that they have become quite a proponent of DATRON solid carbide cutting tools. “We saw the exceptional performance of DATRON tools being used with the DATRON machine in terms of cut quality and tool life, so we decided that we’d give them a try on some of our larger machines.” Those larger machines include MultiCam CNC Routers, and as they anticipated, the DATRON tools did, in fact, improve the performance of those larger machines. Bill said, “In terms of tool life, we’re looking at an improvement of about 3 to 1 which is a big cost saving over time.”

Sign engraving CNC routers like these MultiCam machines can produce better results when using DATRON cutting tools for a better cut quality and longer tool life.
Sign engraving CNC router by MultiCam is equipped with DATRON solid carbide cutting tools for better performance and a 3-to-1 improvement in tool life.

In addition to using DATRON tooling with the MultiCams, they also decided to try DATRON’s coolant with these routers and that too helped to impact cutting quality.

Bill Rogers said, “Staying competitive means trying new things, new technology, and always looking for ways be more efficient.” To that end, Bill and his team are frequent visitors at the DATRON Technology Center in Livermore, CA. According to Rogers, “DATRON has informal events like TechDay at their facility where we can go see advancements in the technology. I can always count on their guys to get us the answers we need. It’s a great partnership.”

Download DATRON M8Cube Brochure:

Rapid Prototyping: Subtractive vs. Additive

With additive manufacturing and 3D printers being such a hot topic these days, it’s important to remember why subtractive processes like milling are still incredibly important to rapid prototyping. But first, let’s examine some of the benefits and limitations of additive rapid prototyping (or direct digital manufacturing).

Benefits of Additive Rapid Prototyping

The process of additive rapid prototyping joins and fuses materials like liquid resins together, layer upon layer to produce a 3D object from model data. Additive rapid prototyping is generally simple, relatively inexpensive and fast. Additive rapid prototyping also allows for a substantial amount of complexity within cavities or internal areas of a part that would require undercuts and may even be impossible with subtractive processes like milling.

Limitations of Additive Rapid Prototyping

The primary drawback of additive rapid prototyping is that the resulting part usually is not made of an end-use material like metal … and even if it is, it lacks structural integrity. That’s because the point where one layer is joined to another lacks the physical strength exhibited by a solid block of the same material (with no layers or joints).

Subtractive Rapid Prototyping with End-Use Materials

Subtractive rapid prototyping provides the ability to prototype in end-use materials. Since milling or machining removes material from a larger piece of material, the finished part has a solid composition rather than a layered composition as seen in additive rapid prototyping with 3D printers. This yields a higher structural integrity which is critical if the prototype part is to be used in product testing. Product testing with a part made through subtractive prototyping allows for an accurate analysis of the part’s viability and even durability since it is made from the same material that will be used to manufacture production parts.

A Wider Range of Surface Finishes and Textures with Subtractive Prototyping

Subtractive rapid prototyping processes also offer a wider range of surface finishes for the completed prototype as opposed to the standard “stepped finish” often achieved in additive rapid prototyping with a 3D printer. This could range from a completely smooth surface with a mirror-like finish to ones with milled or engraved textures. In this way, subtractive rapid prototyping with a high speed CNC milling machine is capable of producing prototype parts with a repeatability suitable for end-use production. The smooth surface finish that can be achieved with high-speed machining can be functionally beneficial if the given part needs to slide and aesthetically beneficial if the prototype is going to be used in market testing.

Additive Rapid Prototyping vs. Subtractive Rapid Prototyping

To illustrate the points made above, we asked our applications engineers to quickly prototype a part using both additive and subtractive processes. Since our favorite after-hours (wink, wink) past time is foosball, they decided to make a “replacement” foosball man for testing. This decision was based on an actual real-life need – since we had recently broken one of the men that came with our vintage 1985 foosball table. Using additive rapid prototyping (3D printing), they were able to design a very rudimentary foosball man in about 90 minutes. From there, they began printing and in just over an hour the part seen below was complete.

 

Additive rapid prototype made with a 3D printer to compare to a similar subtractive rapid prototype made with a high speed milling machine.
Additive rapid prototype made with a 3D printer shows the typical stepped finish indicative of this process.

 

Using subtractive rapid prototyping (high-speed milling) programming the part took substantially longer and clocked in at 3 hrs. 45 minutes. However, milling the part below was considerably faster than 3D printing and took 28 minutes.

 

Subtractive rapid prototyping processes like machining tend to offer more flexibility in terms of surface finish as well as the ability to prototype in end-use materials that are superior for product testing.
Subtractive rapid prototype showing a smooth surface finish and a solid composition that delivered greater functionality.

 

Product Testing an Additive Rapid Prototype vs. a Subtractive Rapid Prototype

Well, you knew we had to “test” the part right? So, in a series of 4 rather heated games using each prototype, here’s what we found. In terms of functionality and durability, the subtractive prototype was the clear winner. Not only did it last through the 4 games, the solid composition of the part made for stronger shots with high velocity. Plus, it clearly would hold up for hundreds of more games. By comparison, the 3D printed part began to show signs of delamination on its right side half way through game 3 — and by the game 4 we had to mend it with a bit of scotch tape to get through the rest of our “product testing”. The damage to the part revealed the inside composition of the 3D printed part as seen below.

 

Additive rapid prototyping using 3D printing can be fast, but less functional in terms of product or market testing due to both aesthetics and their non-solid composition.
Cross section of 3D printing prototype shows internal construction.

 

The rather hollow nature of this part shined a bit of light on why we couldn’t achieve strong shots using this foosball man. In analyzing the resulting surface finish on both parts, we felt that the subtractive prototype was … well, simply more attractive. Plus, the milling process provided more flexibility to achieve different surface finishes. For example, we were able to make the majority of the subtractive prototype very smooth while giving the foot section a more textured finish for added “grip” or ball control. By contrast, the inherent “stepped” surface finish on the additive prototype served well in terms of ball control … but wasn’t very attractive over the entire part.

The Ultimate Subtractive Rapid Prototyping CNC Machine:

Last year’s introduction of the DATRON neo compact high-speed milling machine makes subtractive rapid prototyping more affordable and viable than ever. Plus it’s compact size and touchscreen operation make it easy to use and easy to fit in the tightest “lab-type” environment. To learn more download the brochure by filling out the form below:

AUTODESK Fusion 360 CAM Challenge – DATRON’s Adrian Montero Wins Best Surface Finish

When an Autodesk Fusion 360 Product Manager put out a “key chain challenge” to see who could produce the best quality sample part, many CNC machinists on social media took note and got right to work.

Fusion 360 part being programmed with Autodesk Fusion 360 CAM software by Datron's Adrian Montero.
Fusion 360 Part being programmed by DATRON Application Technician, Adrian Montero.

Appropriately named the AUTODESK Fusion 360 CAM Challenge, participants were asked to produce a Fusion logo made into a key chain.  Autodesk supplied all participants with the same file in their software. There were only 3 requirements to the Autodesk Fusion 360 CAM Challenge:

  • Use Autodesk Fusion 360 to program
  • Take a photo of yourself programming the part
  • Supply a photo of the final end product
Fusion 360 CNC milling performed on DATRON neo high speed machining center.
Fusion 360 CNC milling challenge on DATRON neo, compact high-speed mill.

All participants of the Autodesk Fusion 360 CAM Challenge were given 1 week to complete their sample parts and submit their photos. In that week 56 people participated and tagged 152 photos that were viewed by 129,000 people.

Fusion 360 CNC machining challenge won by Adrian Montero who used a DATRON neo high speed milling machine.
Original Fusion 360 key chain next to the one milled in acrylic on a DATRON neo by Adrian Montero.

DATRON Dynamics Application Technician, Adrian Montero won the Autodesk Fusion 360 CAM Challenge in the Category of Best Surface Finish. His part was machined on the DATRON neo, compact high-speed milling machine.

Learn more DATRON neo download the brochure:

Nameplate Manufacturer Calls DATRON Source of Efficiency

Willington Nameplate in Stafford Springs, CT manufactures metal engraved nameplates and Identification tags for a wide range of customers from aerospace and defense to Gillette Stadium – they actually produced all of the seat tags for “Casa de Brady”. Their metal nameplates and ID tags are made from a range of materials including aluminum, brass and stainless steel.

Willington Nameplate was founded over 50 years ago by Marcel Goepfert and day-to-day operations have been run by his son, Mike Goepfert, since 1990. Since that time, there have been many changes and a lot of growth. This includes a critical decision in 1999 to purchase their first DATRON high-speed milling machine.

Nameplate milling including control panels, data plates and dials is performed at Willington Nameplate on their DATRON high speed machining centers.
Nameplate milling at Willington Nameplate includes control panels, data plates and dials.

Willington Nameplate’s Fabrication Group Leader, Jamie Vale Da Serra, recounts this story saying that, “Prior to installing the DATRON machine we used a manual kick process.” He goes on to say, “We needed to get away from that process because we needed a tolerance higher than .005”. Vale Da Serra refers to the DATRON milling machine as a “set it and forget it” piece of equipment that runs unattended freeing up staff to attend to other tasks.

Nameplate engraving and milling at Willington Nameplate is performed on DATRON high speed milling machines that can run unattended.
Nameplate machining by Willington Nameplate is optimized by DATRON features like vacuum chuck workholding, probing and automatic tool change – resulting in their ability to run this machine unattended.

Quick job setup and the ability of the DATRON machine to run unattended are the result of a number of integrated features – all operating in concert. This starts with integrated vacuum table or vacuum chuck technology that allows the operator to quickly setup the workpiece – for nameplates this is generally sheet material such as aluminum, stainless steel or Metalphoto®.  An integrated probe for part location and measurement also speeds up job setup and enables uniformity by automatically compensating for material irregularities like surface variance. An automatic tool changer with an integrated tool-length sensor provides a full stable (and wide variety) of necessary tooling that can automatically be changed at given intervals and/or when a tool is broken.

Nameplate machining by Willington Nameplate is done with their DATRON CNC mills and produces labels, tags and UID marked nameplates.
Willington’s nameplate machining yields labels, ID tags and UID marked tags.

Vale Da Serra says, “Consistency is there with the DATRONs from the first to the last they all measure the same, whereas with the manual process human error is possible that could give you a deviation.”

The growth at Willington Nameplate is not limited to adding DATRON machines, the company has recently purchased three other companies in New England, thereby expanding sales by 35% in five years. With a staff of more than 80 people, Willington Nameplate has now set their sights on additional acquisitions elsewhere in the United States.

Learn more about Nameplate Production download the White Paper:

In Their Own Words – Engraver, DC Graphics – Talks DATRON Milling & Engraving Machines

DC Graphics, founded in ’94 by Kevin Brandon, is run today by Eugene Prohaske, President, and Kristine Brandon, Vice President, and has a long history in the engraving industry. Eugene is a passionate engraver and has over 30 years of experience in the engraving for packaging industry. He originally started in the engraving business with his father’s company, Styleart Engraving back in 1983. After his father retired in 1994, Eugene started his own business, HAP Engraving in Manhattan, together with a partner. They were in business until 2010 when he came to DC Graphics. Eugene originally joined business with Kevin Brandon, former President and original founder of DC Graphics. They worked together for about three years before Kevin passed away in 2013.

Engraving machine made by DATRON in Germany is used by DC Graphics to engrave plates, stamps and dies for the graphic packaging industry.
DATRON engraving machine used by DC Graphics in Farmingdale, NY to engrave plates, stamps and dies for the graphic packaging industry.

DC Graphics is an offset, flexographic pre-press, plate/die making and photoengraving facility, which produces magnesium and copper plates/engravings as well as CNC milled brass plates. DC Graphics, specializes in producing sculptured embossing dies and engravings, flat stamping and folding cards for the paper packaging and pre-press industry. They employ a staff of approximately 16 people.

Magnesium is a metal plate that can withstand high temperatures and is impact resistant as well.  Embossing and foil-stamping both require a plate that can meet these criteria for long press runs. Magnesium plates are also used to make rubber plates, signs and name plates; a versatile product indeed. Its durability provides the end user with a long-lasting printing image or die. Plates come in different thicknesses: 16 gauge, 11 point, and 1/4′.  The largest size is 18″ x 24″.  Copper is also used because it is a harder metal that lasts and stores longer for a better quality product. Counters for their embossing and debossing dies are available in both .030 and .060 thicknesses. They can also create fast and accurate brass dies to a customers’ exact specifications with CNC machining.

Known for engraving embossing dies, DC Graphics uses a DATRON CNC engraving machine for their work in the graphic packaging industry.
DC Graphics is known for engraving embossing dies like this intricate butterfly engraved on their DATRON machine.

DC Graphics is constantly seeking new innovations and utilizes the most current technology in its industry.  Having access to the latest technologies keeps DC Graphics ahead of their competition by allowing them to work more productively. Their state-of-the-art equipment allows them to provide their clients with high-quality products faster and less expensively than their competition. Before DC Graphics purchased their first DATRON high-speed milling machine, everything was done by hand, gauging machines and etching. But etching proved to be dirty and carried additional costs associated with disposal of the chemicals used in the process. They knew that they needed a change.

So, in 1996, DC Graphics purchased their first DATRON machine (an M4) and made a transition from everything being done by hand, gauging machines and etching and began using CNC milling machines. It was a big undertaking but proved to be a smart decision for DC Graphics to go green and DATRON was the perfect solution for that.

Prohaske says, “Once I saw everything, I decided this was the wave of the future for us and if we didn’t make the change when we did more than likely we wouldn’t been in business anymore.”

Engraving brass dies that produce graphic packaging for Yves Saint Laurent is and application performed on Datron CNC engraving machines by DC Graphics in New York.
Here you can see how engraving brass dies translates to graphic packaging for Yves Saint Laurent.

In 2008, DC Graphics purchased a DATRON M8 high speed milling machine, followed by and two additional M8s (in 2012 and 2013) to get their engraving jobs done quicker and to handle more business for their customers.

According to Prohaske, “At the beginning it was a big learning curve because we needed to get the machines in and had to figure out how to run them. DATRON definitely walked us through it as a real partner would do.”

It was a natural progression of having one machine and getting a second one soon. At this time, they had one DATRON and one LANG.  They took one year to evaluate the two machines and started weighing the pros and cons of both machines.  Both are reliable and good German-engineered machines, but the service and support in the U.S. provided by DATRON Dynamics was a major part the decision to get more DATRON machines.

“They are in the States and whenever I have a problem, they help me and respond to an issue right away. Having a contact person and service over here is key because if I need a part or help figuring out what the problem is or what needs to be replaced, I can get the part the next day; worst case scenario being two days.” says Prohaske.

Prohaske continues, “I always have good experiences with DATRON. They always treat me with a lot of attentiveness and they always help me to get through an issue and give me guidance. I respect that and know I can trust them!  Moving forward with the business and growing by getting more machines, it was just a logical decision to continue with DATRON. For what we need, DATRON is the best machine. The machines work fantastic because they’re very versatile and don’t break down. They last for years.”

Now, DC Graphics uses the DATRON machines for most of their projects. They run their LANG for flat stamping plates only because it has a smaller table and only an eight-station tool holder compared to the DATRON, which has a 15-station tool changer and larger table. The DATRON gives them more options in terms of creative engraving, which requires a high level of expertise and flexibility of the machine.

“It is just a very nice machine to work on.  I do a lot of programming for the creative engraving and I am very familiar with the DATRON. My engraving creativity combined with the opportunities a DATRON machine offers is a good melding and these different factors coming together make a product that comes out quick, clean and reliable.” Prohaske says.

Prohaske prefers using a lot of tools. He uses specific tools with angles, shapes and cuts for engraving that help him to create a die quicker. This versatility helps him to achieve engraving effects he wouldn’t be able to produce if he didn’t have so many tools at his disposal on the machine. He has the engraving expertise to know how to apply the right tools for particular engraving challenges. Creative engraving is part of the front end program process where he programs everything and applies it to run on a DATRON.

 “We really try to maintain a good customer service and engraving expertise – the knowledge of what’s gonna work.  For certain types of engraving you need to know what’s gonna work to get an effect. That’s what people appreciate because they don’t know what to do. They come to me and say what’s gonna make this look like what our customer wants. That’s when you build a good report where they can account on you. You are able to do something that other engravers can’t do. That is you edge! I never want to be known as the cheapest engraver … instead, I want to be known as the place to go when something is difficult. And the reliability of DATRON machines and the fact that I’m familiar with these machines allows me to provide this kind of cutting-edge solution.” – Prohaske says.

Download the DATRON Engraving Machine Brochure:

CNC Guitar – Fender Stratocaster Replica Made on DATRON M8Cube

DATRON AG employee, Marc Reis, made a CNC guitar using a DATRON M8Cube high speed milling machine.  This CNC guitar is a Fender Stratocaster replica with body, neck, electronics pocketing, fret inlays and tuner through holes all milled on this high speed CNC milling machine made by DATRON AG in Germany.

Video of CNC Guitar Milling

For this CNC guitar milling project, Marc was able to leverage many of DATRON’s unique features such as vacuum table workholding used to hold the guitar body during machining. DATRON Vacuum tables are designed to swiftly and efficiently secure flat workpieces to the bed of a machining system. Thin stock, which could be secured only with great difficulty before, can be secured literally within seconds with this vacuum system. This includes plastic foils as thin as 0.001” up to heavier 0.250” aluminum sheets. This vacuum table features airflow-optimized ports, with recessed chambers, to provide superior vacuum distribution. A low cost, gas-permeable substrate serves as a sacrificial vacuum diffuser, allowing the cutter to machine through the workpiece, without cutting into the table.

Also, the ability to clamp long (or tall) parts to front of the cut-away in the M8Cube machine bed facilitated the drilling of a cavity in the guitar neck to accommodate the truss rod. (A guitar truss rod is used to stabilize and adjust the lengthwise forward curvature of the neck.)

CNC Guitar Photo

CNC guitar milling like this Fender Stratocaster replica can be done with high speed milling machines such as the DATRON M8Cube.
CNC guitar milling of a Fender Stratocaster-style electric guitar.

The DATRON M8Cube high speed milling machine features brushless, direct drives that provide faster acceleration, feed rates up to 866 inches per minute and shorter cycle times. A 3kW, 40,000 RPM, liquid-chilled spindle delivers greater horsepower for heavier machining, as well as the flexibility to mill a wide range of materials. To learn more download the brochure by filling out the form below.

Download Brochure on Machine Used to Make this CNC Guitar:

Microsoft R&D Lab Using Datron High Speed Milling Machines For Rapid Prototyping

 

Microsoft’s Corporate Vice President, Panos Panay, says, “This is like a big toy factory” when speaking about their R&D operation in Redmond, WA. This state-of-the-art facility, along with the many DATRON high-speed CNC machining centers there, was recently featured by CNN in a piece called “Inside Microsoft’s secret design lab”. Like a kid in a candy store Panay continues, “You can spend days and weeks and build anything on the planet in this building!”

 

Microsoft R&D lab machining thin aluminum housings using DATRON high speed CNC milling machines.
Microsoft R&D lab using DATRON high speed machining center for milling thin aluminum housings.

 

Indeed, Microsoft has amassed the world’s leading technology under one roof and the possibilities are endless. Many of the products and devices that we’ve all grown to love and depend on were developed in this building. More importantly the future of commercial electronics will be born here.

Panay is the man behind Microsoft’s Surface, and when commenting on the competitive landscape he says, “You know, we have a very deep set of competitors right now. We’re not sitting on our heels, we need to go forward every day. We can’t fall behind and the way to do it is you build a product, you test. If it fails you build it again. This is awesome right? You learn right away. Iterate, every hour or couple of hours, you can put something in overnight … you can find success and boom! Right there, you’ve failed and succeeded in almost the same set of 8 hours and now you have a solution that works for your customers.”

This is perhaps, the truest spirit of Microsoft R&D, and the equipment in their lab is akin to an artist’s paintbrush, allowing them to embody and emote this spirit in an efficient and meaningful way that can impact the daily lives of millions of consumers. Commenting on rapid prototyping, Panay says, “It happens quickly and it happens in a way that you get the true feel of the product. That’s so important. Tor really know what your customers are going to use and love you have to feel it.”

DATRON is proud to have consulted with this Microsoft R&D lab regarding the best suited high speed milling equipment for this type of rapid prototyping. What can be seen in the video, is a lineup of DATRON M8 and M8Cube high-speed CNC milling machines that are particularly efficient in milling aluminum parts with superior surface and edge finishes. The quality of surface and edge finish is of paramount importance when evaluating attributes like “feel” discussed by Panay in the video.

 

Microsoft R&D lab in Redmond, WA using DATRON high speed CNC milling machines for the rapid prototyping of consumer electronics parts including these aluminum housings for Surface3.
Microsoft R&D Lab rapid prototyping aluminum housings for Surface 3.

 

Bloomberg broadcasted a different video last year of the Microsoft R&D lab that was titled “Inside Microsoft’s Secret Surface Labs”. In this video, the narrator refers to the DATRON M8 as a “magnesium slicing milling machine” and Panay, who appears in this video as well points out, “You’re starting to see that same billet back there come to life right here … and this is our model shop.” The “Surface” story in this video is very much about the tenacity of Microsoft R&D. In fact, it suggests that the initial launch of the Surface in 2012 was less than successful and that iterations of the design have resulted in the product quietly gaining ground.

 

Brett Ostrum, Surface Development General Manager at Microsoft says, “Thinner and lighter, thinner and lighter, thinner and lighter. Grams, tens of grams are a huge currency for us.” As consumer electronics get smaller, the machines used to develop them have to be able to make tiny parts often featuring thin features, thin walls and other intricate features. This is where DATRON high speed machining centers excel because they were engineered from the ground up around a high speed spindle and for the sole purpose of high speed machining. To learn more about this technology and the science of high speed machining:

Download the High Speed Machining White Paper

Engraved Name Plate Production with High Speed Milling Machines

Nameplate production using high speed milling machines for speed and accuracy in manufacturing low to medium volumes of ID tags and nameplates.

As recently as a decade ago, there was discussion regarding the best process for engraved name plate production –with the main contenders being the Pantograph, Stamping Machines and Milling Machines. Since that time, the argument for the pantograph has all but gone the way of the dinosaurs. That is because pantograph is a manual machine that requires extremely skilled craftsmen, so the process cannot be automated and it has become difficult to find qualified operators. Both of these factors increase costs. Stamping Machines, on the other hand, remain a viable method for engraved name plate production. Particularly where very large production runs are required, stamping machines have noticeable advantages. Specifically, for runs of say 20,000 name plates, the fact that these machines can produce a couple of parts per seconds makes them a logical choice. For lower runs, however, the costs of running stamping machines reduce the appeal. Much of the cost is associated with the dies required for the process which range from $2,000 to $5,000 each. Combine that cost with the quality of a stamped name plate and the stamping process becomes unattractive. This is because the stamping machine removes material from the workpiece by pushing the die down through the material like a cookie cutter. The force created at the location of the cut bends and shears the substrate. With malleable materials like metal this can mean bending at the edge and with other more brittle substrates, chipped edges can result. Finally, stamping machines are limited in functionality to just stamping or cutting the part out. So if the end product requires a counter sunk hole, tapping or engraving (perhaps for serial numbers), this would require another piece of equipment and a secondary operation – both at additional cost to the manufacturer.

 

ID tag milled from Metalphoto by high speed milling machine and engraved for engraved name plate production.
Typical ID tag milled and engraved by high speed milling machine for engraved name plate production.

 

So, for lower volume name plate engraving, milling machines — and specifically high speed milling machines — reign supreme. The remainder of this blog post will focus on high speed milling machine features that provide the competitive advantage in engraved name plate production.

High speed spindle on high speed milling machine used in the production of engraved name plates for quality surface and edge finish.
High speed spindle provides high quality surface and edge finish in engraved name plate production.

 

High-Speed Spindle Most ID product and name plate engraving is done with small engraving bits and end mills. These small tools must be run at high speeds. High-speed milling machines featuring high-frequency spindles from 40,000 to 60,000 RPM effectively evacuate chips from the cutting channel during milling and engraving. This results in smooth surfaces and burr-free edges. It also eliminates the need for a secondary de-burring operation, as well as the costs associated with it.

 

Integrated probe on high speed milling machine used for engraved name plate production compensates for surface variance to minimize waste.
Surface probing used in engraved name plate production to reduce setup time and eliminate waste.

 

Probing Probing or Surface Scanning (Mapping) saves time during job setup and ensures accuracy and repeatability. Probes available as an integrated component on some milling machines can recognize irregular work-piece topography and compensates for it dynamically. They do this by taking measurements along the surface of a blank and feeding that data into the machining controller. The controller automatically adjusts for uneven surfaces or work piece position. Through this process, job setup times are reduced and piece/part rejection is minimized.

 

Engraved name plate production benefits from oil-free coolant systems that eliminate the need for degreasing after the high speed milling of nameplates.
Oil-Free coolant system for high-speed milling machines used in engraved name plate production.

 

Oil-Free Coolant While Probing can save valuable time at the front end of engraved name plate production (during set up), oil-free coolants can save time at the back end. That’s because unlike oil that leaves residue on the completed nameplate, certain oil-free coolants simply evaporate. So, the secondary de-greasing operation can be eliminated – thereby reducing the cost of labor, the cost of consumables required for cleaning, and most importantly minimizing total engraved name plate production time.

 

Engraved name plate production using high speed milling machines featuring integrated vacuum table workholding for quick job set up.
Integrated vacuum table used with milling machine for production of engraved name plates.

 

Integrated Vacuum Table Workholding Workholding for engraved name plate applications, like production runs of Metalphoto, can be problematic. Thin substrates are difficult to hold. This is particularly true if the manufacturer is using a conventional CNC to engrave or cut small parts with limited surface area, because the force of the spindle can literally “fling” the part across the machine bed once it is completely cut out. Many manufacturers actually resort to spray glue as a method of workholding. Not only is this messy, it can also lead to bending when the finished part is removed from the machine bed. Plus, it results in a time consuming and costly secondary application to remove the glue form the completed parts.

However, some high-speed milling machines can be equipped with integrated vacuum table workholding. For example, with DATRON’s vacuum table, thin stock, that was once difficult to secure, can now be secured in just seconds. Plastic foils as thin as 0.001”, up to 0.250” thick aluminum sheets can be secured quickly and held in place even when the parts are “cookie-cut” completely through the material. A vacuum pump provides vacuum power for the system to work. A vacuum table features airflow-optimized vacuum ports, with recessed vacuum chambers, to provide superior vacuum distribution. A low cost gas-permeable substrate serves as a sacrificial vacuum diffuser, allowing the cutter to machine through the workpiece, without cutting into the table.

 

Automatic tool management on high speed milling machine used for production of engraved name plates facilitates unattended and lights-out production of nameplates.
Automatic tool management system on high speed milling machine used in production of engraved name plates.

 

Automatic Tool Management ID product and engraved name plate manufacturers considering various CNC machines for milling and engraving, need to consider their current processes and what their ideal process might be. In other words, they may currently be running only one or two shifts, but in a perfect world, an unattended overnight shift could be the secret to increased profitability. Even if a “lights-out” shift isn’t in the cards, a day shift where the CNC machine can run unattended allows the operator to tend to other business – thereby providing the manufacturer with more productivity from a single employee.

So, choosing a CNC with the right kind of tool management is crucial. The required Automatic Tool Management System is made up of three separate components working in synergistically — the tool checker, the tool changer, and the software. The tool checker is a mechanical sensor that measures tool length and detects the broken tool. The tool changer is a rack or tray that has space for spare tools and sockets where the machine places broken tools before picking up a replacement. Operators can stock the rack with spare tools, so they have a ready supply should tools break during “lights out” operation. The software is a macro program that can be set up to run a tool check after executing a number of lines of code. For example, a tool check macro can initiate a check after every 500 lines of code by employing an “if/then” statement such as, “Measure this tool; if the length is shorter than the parameter (listed in the software’s tool database), then change the tool.”

Wrapping It Up: ID product and engraved name plate manufactures who specialize in low production runs can gain efficiency, flexibility and an overall reduction in cost by using high speed milling machines. Since most of these manufacturers use small tools, it is imperative that they select a CNC machine designed specifically for use with small tools. High-speed spindles are best suited for small tools and produce burr-free parts with superior surface and edge finishes. The low force of these spindles maximizes tool life and enables innovative workholding such as integrated vacuum tables that reduce setup times. Probing also makes setup more efficient and ensures accuracy and repeatability. Automatic Tool Management provides a reduction in cost by enabling unattended or lights-out production. High speed milling machines that deliver all of these features provide manufacturers of ID products and engraved name plates with a real competitive and cost-reducing advantage.

How Batch Production Improves Manufacturing Efficiency and Reduces Costs

If you think of batch production as an endless shift of “part in, part out” you’re not alone. Certainly, machine operators responsible for loading blanks, machining them, and removing the finished part – over and over repeatedly – share the view that a shift can be mundane and at times even seem endless.

But, with the right equipment, batch production or batch machining can be cost saving for the manufacturer and liberating for the machine operator. Further, if planned carefully, batch production strategies can facilitate unattended production or lights out manufacturing which add to the cost savings realized by manufacturers.

Batch machining or unattended lights out manufacturing using large format DATRON high speed milling machines with integrated vacuum table workholding to hold sheet material during milling.
Batch machining using vacuum chuck to hold sheet material.

The Batch Production “Ideal”

Using milling machines with large beds reduces operator intervention since they accommodate numerous or sizable “blanks” that can yield a full batch in a cycle time that coincides with the length of an operator’s shift. That way, the operator can place a batch on the machine in the morning and attend to other duties during the day. The automated machine works all day producing the needed pieces. Near the end of the shift, the operator removes the completed batch, sweeps down the machine, and sets up another batch to run unattended all night.

When the operator returns to work the next morning, he removes the batch that the machine produced overnight and starts up another one. This gets two shifts’ worth of work out of a single operator. This is the principle of “lights out” production — so named because the machine is left running overnight when everyone has gone home. Of course, this scenario reflects the batch machining “ideal”, since it keeps the machine operating unattended for most of the workday and at night. This may not fit your exact application but, the closer you can get to this ideal, the more efficient and cost-effective your operation will become.

Note: Achieving the highest degree of efficiency or the “ideal”, requires increasing the machine’s role in the process while decreasing the need for operator supervision. So, manufacturers striving to reach this ideal must employ the right machines and also identify alternative labor functions to fill the void left by the operator’s diminished role in production.

Unattended / Lights Out Production in Theory

Based on an 8-hour day, let’s say labor costs about $0.40 a minute and a machine costs about $0.20 a minute to operate. So, if you tie an operator to the machine with one-up production, your total cost will be $0.60 a minute. If you were to run two shifts, the machine would cost only $0.10 a minute, while the labor cost remains the same at $0.40 a minute. Although it’s a savings, it falls short of maximizing the impact on a manufacturer’s bottom line … and more can actually be saved. By setting up a machine to do the work without operator intervention during the second shift, the reduction in the labor cost brings the machine cost as low as $0.05 a minute.

While the cost of labor is something that the manufacturer cannot control, companies can still achieve substantial savings through batch machining that gets twice the production from a single operator with no increase in labor cost. This method can be expanded into “lights-out” production (one shift of unattended machining) to further reduce machine costs. Any form of batch machining is superior to one-up production and represents a “set it and forget it” method to achieve cost-effective, efficiency with machines that were designed to be automated in the first place. A machining center featuring a large working area (bed) and possibly automation offers a complete solution for batch machining that will directly and positively impact a manufacturer’s bottom line.

Download Free Batch Production Case Study (real-world example):