On the Rails with High-Speed Machining!

Haydon Kerk linear motion system with parts machined on a DATRON high-speed machining center.

Large Manufacturer Adds High-Speed Machining to Make Rails for Slide Assemblies. Haydon Kerk is an internal part of AMETEK’s Advanced Motion Solutions group focused on producing a full range of components and precision motion control systems. This includes linear actuators, lead screws and nuts, linear rails and guides, drives, motors and other components. The Kerk Products Division in Milford, NH was founded by brothers, Ken and Keith Erickson, in the 1970’s based on their patented improved anti-backlash lead screw design.

One of several buildings in the Kerk Products campus dedicated to manufacturing components for Haydon Kerk's line of precision motion control systems.
One of several buildings in the Kerk Products campus dedicated to manufacturing components for Haydon Kerk’s line of precision motion control systems.

Today, their products are used primarily in the industrial automation, medical, aerospace & defense, petrochemical, and semiconductor industries. Plant Manager, Stan Brown says, “Whether it’s lead screws going into high-tolerance precision automation systems or screws that go into parts for orthoscopic surgery (replacing heart valves), one thing we can almost count on is that there will be some level of customization required.” Jim Lamson, Manufacturing Engineering Manager, agrees saying, We joke that nobody ever orders anything out of our catalog, it’s more like a book of suggestions.”

To that end, just for screws alone, Haydon Kerk manufactures and stocks over 475 different combinations of diameter and advance per revolution thread types to use in their standard products and custom solutions. So logically, their business requires a lot of equipment to keep up with all of the variations requested by their customer base. Within several buildings on their campus, they house Swiss-type Machines, Doosan Turret Lathes, Thread Rolling Machines, Haas VMCs, OmniTurn CNC Lathes, Sinker EDMs, and Mori Seiki VMCs.

The Search for a Production Solution Leads to a High-Speed Machining Center

In 2011, it was their line of slide assemblies that lead them to search for another piece of equipment — specifically for milling rails from anodized aluminum extrusion stock. As with their other products, these parts also required a significant amount of customization to satisfy a range of customer requirements. Lamson says, “It may be a variation on number of mounting holes, size of mounting holes, whether they’re tapped or through holes, or the length of the rails, but there’s a level of customization on every order.”

At the time, Haydon Kerk was using various milling machines to produce these rails and Lamson says that there were problems. “The process was just too slow. We had multiple shifts with multiple operators per shift trying to keep up and they were buried and falling behind. We needed another solution and I began to research other milling machines that could handle these long aluminum extrusions.”

Precision motion system parts made with DATRON high-speed machining center
An array of high-precision linear motion systems manufactured by Haydon Kerk including stepper motors, linear actuators, lead screws and linear rails.

Ultimately, Lamson’s search didn’t take him very far because he found DATRON Dynamics, the North American distributor of DATRON high-speed milling machines, right down the street in Milford, NH. So he packed up a test rail, some extrusions, a completed rail, and some drawings and headed over to DATRON’s Technology Center to have them do a test cut. Lamson recalls, “An average rail of that size, was taking us over 15 minutes to make and there were multiple different setups to do it. DATRON accomplished the same rail, completed, in a fraction of the time with a single setup.”

The machine used for the test cut was the DATRON M85 which features a large 30″ x 40″ work envelope but has a comparatively small footprint. Haydon Kerk, Manufacturing Supervisor, Scott Ladue, says that this combination was eye-opening “If you look at our screw rail milling where we’re using a big VMC, the machine is as big as a sea crate out there – but that’s because we need the 60 inches of travel. With the DATRON we can still make a 60-inch rail, but its footprint is only 69” x 55”.

High-Speed Machining Results in 300% Increase in Production!

So, Haydon Kerk purchased the DATRON M85 for milling these rails and relegated the conventional milling machines to other work. Six years later, Ladue reflects on the impact of that decision in terms of time and manpower, “We were running multiple shifts at capacity and now we’re running the DATRON on one shift and we’re able to keep up with demand. Plus, the volume has increased since we got the DATRON in 2011, so we’ve basically increased our productivity by over 300%.

Rail for slide assembly milled on the DATRON high-speed machining center to add pockets and mounting holes to fill a custom order.
Rail for slide assembly milled on the DATRON high-speed machining center to add pockets and mounting holes to fill a custom order.

In terms of setup, Haydon Kerk integrated four Kurt double-lock vises on the M85 so they can put two rails in at a time, or if they’re running short rails, they load two rows of individual rails. Ladue says, “So, regardless of rail size it’s just a matter of loading the vise and running the program for that series of rails after using DATRON’s integrated probe for part location.”

Probing in High-Speed Machining Reduces Setup Time and Ensures Accuracy

DATRON’s integrated probe is mounted on the Z axis and the measurement is performed when the probe swivels from its home position to the measuring position. DATRON’s patented capacitive measuring principle ensures high repeatability as well as measurement accuracy. The probe is easily operated through menu-controlled software. After the measurement is performed, offsetting occurs directly in the control software, automatically adjusting the milling program to compensate for surface or positioning variance. This minimizes operator error and virtually eliminates waste.

Lamson says that the integrated probing is particularly useful when machining rails that are longer than 30 inches. “Often a customer’s requirement may be for a much longer rail and with the DATRON’s onboard measuring system we can fixture the part, machine a portion of the rail, move it, pick up a feature that we’ve put into the part and position to the end very accurately.”

Haydon Kerk Manufacturing Engineering Manager, Jim Lamson with rails made on the DATRON high-speed machining center.
Haydon Kerk Manufacturing Engineering Manager, Jim Lamson shows off some average size rails made on the DATRON.

High-Speed Machining with Evaporating Coolant Yields Clean Parts and Makes Secondary Operations Obsolete

Lamson also says that DATRON’s minimum quantity (evaporating) coolant was an added bonus that had an unexpected benefit. “When the parts come out of the machine, we don’t have to put them through a secondary cleaning process in order to go into our TFE coating process. The chips that end up in the chip bin are clean dry chips, they’re not gummy or oily. If parts are still wet when they come out of the machine, you can literally watch them dry in front of you. Plus, the coolant is actually a little bit of a solvent so the parts probably come out of the machine cleaner than when they went in. That was a completely new and inspired idea for us that we could have coolant that we didn’t have to clean up.”

A batch of smaller rails coming off the DATRON M85 high-speed machining center
A batch of smaller rails coming off the DATRON M85 high-speed milling machine.

Cutting Tools for High-Speed Machining

In addition to the DATRON machine, Haydon Kerk has also become a DATRON tool customer and Manufacturing Supervisor, Scott Ladue, says, “DATRON tools are excellent. We don’t buy a lot because they last a long time and the operator pushes them as fast as the machine will go. Plus, the parts that we’re machining have a hard coat anodize on them so they’re a little harder than raw aluminum.” Jim Lamson adds, “Using the DATRON led us to use our other machines a little differently, because you don’t tap anything on the DATRON, you threadmill, and we’re used to using taps. We’ve had parts being made on other machines where you couldn’t use a tap, so we went to DATRON’s tooling people and had them develop a custom threadmill for our other machines.”

During the six years of using the DATRON machine, Haydon Kerk has kept up with suggested preventative maintenance and as a result, their most stressful “service issue” involved running out of coolant. Plant Manager, Stan Brown recalls, “In terms of maintenance and reliability it’s been very reliable and very consistent. The only issue that I can recall is running out of coolant once, and in that case, DATRON provided outstanding service and support by providing additional coolant to keep production running.”

Haydon Kerk machinist operating the DATRON high-speed machining center.
Haydon Kerk’s DATRON machine operator initiates the milling program to run a batch of smaller rails.

Download DATRON High-Speed Machining Center Catalog

Be a Shark: Rowing & Milling at High Speed with MLCube!

Hudson Boat Works is a rowing racing shell manufacturer based in London, Ontario. Jack Coughlan and his brother-in-law, Hugh Hudson, founded the company in 1981. Hudson is an official boat manufacturer for the Canadian National Team and their boats have won 84 World and Olympic Medals since 1984.

In March 2007, Hudson began production of their “Shark” line of boats. Their Great White 1x and Hammerhead 8+ shells are currently designed by Steve Killing (Canadian Naval Architect). These sleek boats are faster, more stable, and more comfortable for rowers. Since 2005, Glen Burston, Operations Manager, has been the driving force behind Hudson’s innovation. Glen has applied his Master of Engineering knowledge and National-level rowing experience to transform the company into a cutting edge manufacturing success.

The official boat of the Canadian National Team, Hudson boats have won 84 World and Olympic Medals.
The official boat of the Canadian National Team, Hudson boats have won 84 World and Olympic Medals.

In 2015, plans were set to build a line of lighter, faster boats comprised of all carbon fiber components named Ultimate Super Predator (USP). Hudson’s ability to quickly bring this line to market would solidify their competitive advantage and their standing as industry leader. However, their ability to do this was being hindered by the slow turn-around and high costs associated with outsourcing 90% of their machined parts. In particular, the aluminum molds required to make all of the carbon fiber parts that comprise a rowing scull were projected to be completed over a 3-year period — and that time frame simply wouldn’t do.

Hudson’s Mechanical Engineering Technologist, Cam Fisher recalls, “We have a fairly large 3-axis CNC router that does all of the trimming for the boat hulls and all of the edge profiling of the boats, but it doesn’t have the accuracy needed for mold making.”

So, the search for new CNC machining technology began. It soon became apparent that standard CNC routers wouldn’t have the accuracy they needed for mold making, and with their largest part being on the order of 64 inches from tip to tip a conventional VMC probably wouldn’t have the amount of work area they needed. This was compounded by the fact that the space they had allocated for the machine was 20′ x 10′ (200 sq. feet). However, when Glen Burston found DATRON it seemed that all of Hudson’s “pain points” could be addressed. Cam Fisher remembers “In general, you look into your Haas machines because that name is always out there and we looked into some other larger mills. But, Glen came across DATRON and when Jack Coughlan talked to them their MLCube machine just seemed to kind of hit all of the points that we needed. Footprint was one of the big ones because we don’t have a lot of room in our shop to put a very large mill. The MLCube wouldn’t take up too much space and what we could do with a 60″ x 40″ work area would be unreal.”

DATRON MLCube large-format milling machine featuring a 60" x 40" machining envelope.
DATRON MLCube large-format milling machine featuring a 60″ x 40″ machining envelope.

It was decided that Hudson would send their largest model to DATRON for them to do a test fit at their Technology Center in New England. This curved part looked almost like a huge boomerang with a span of 64 inches between the two tips. This meant that DATRON had to get a little “creative” with the placement of the part and relocating a tool magazine on the machine bed. But, with this part representing a “worst case scenario” they were confident that they had the right solution for Hudson.

This large aluminum mold is 64 inches from tip to tip and is used to make the carbon fiber rigger mounted to Hudson's lightweight boats.
This large aluminum mold is 64 inches from tip to tip and is used to make the carbon fiber rigger mounted to Hudson’s lightweight boats.

In the end, this proved to be true and Hudson was very excited to purchase the DATRON MLCube. Now, just over a year later, Cam Fisher reports, “Bringing the DATRON machine in was a giant cost avoidance right off the bat. Originally, we were looking at the 2-3 year mark to get everything we needed through outsourcing and the cost of these very large molds was astronomical. With the DATRON, we’re already at the point where we’re ready to offer everything. In less than a year, we’re where we wouldn’t have been until about 4 years from now. Bringing this line of USP boats to market gave us a huge competitive advantage.”

In addition to the milling molds that they’ve completed, Hudson manufactures aluminum parts for the rigging on their boats and as planned they have moved on to this production phase for their new line. Fisher says, “Now, I’m coming out of making molds and I’m bringing in production parts. I still had a mold fixture on the machine last week and another part came in and I never took the other fixture off the machine. Because of the conicals, I positioned the new part where I wanted it and was off and running.”

A conical system that ensures the position of fixtures and facilitates repeatability.
A conical system that ensures the position of fixtures and facilitates repeatability.

Fisher is referring to a system of conicals integrated into the bed of the MLCube. These conicals are used to position workholding like clamps, pallets and vacuum chucks. The conical cavities are milled by the machine itself on the surface of the machining table. This results in a “boss-in-cavity” system that ensures location repeatability. So, if he’s in the middle of a batch of parts and an unexpected rush project comes in, he can remove one fixture and replace it with the one for the new job. When the rush job is complete, he returns the first fixture to its place and picks up where he left off. Because the MLCube has such a large work envelope, it can accommodate more than one
fixture or setup and in the case that Fisher mentioned he just found an empty space on the bed for the new part.

The aluminum rigging parts that Fisher is making now will be welded on the boat’s outriggers and he has been impressed by how the parts come off the machine “Going with ethanol as a coolant for these aluminum parts, they come off the machine and go straight to our welding – because the ethanol evaporates there’s no post work to be done to them. They’re just clean and ready to be welded. That’s a huge time saver.”

Custom fixture seated on the bed of the DATRON MLCube using a conical system that ensures position and repeatability.
Custom fixture seated on the bed of the DATRON MLCube using a conical system that ensures position and repeatability.

But aluminum is not the only metal that Hudson will be cutting on the DATRON machine and Fisher comments on additional plans, “We’ll be bringing in titanium as well. With all of the carbon fiber parts, all of the metal components that go in them are titanium. Titanium’s not a fun metal to cut, but for one part that I’ve done so far on the DATRON I was running at 200-220 ipm which is
incredibly fast and I’m still dialing in the feeds and speeds.”

In order to optimize the program for the titanium part, Fisher consulted with DATRON Application Technician, Dann Demazure, and recalls, “DATRON’s application techs have been great and have sent me a lot of information to help in my effort to dial in the titanium parts. Dann did a ton of research for me. Since I didn’t have a lot of experience with it, it would have been hard to figure out without a lot of trial and error, but the DATRON guys always come through.”

This kind of relationship between operators and DATRON Applications Technicians is common and is generally initiated during the sales process and solidified during machine installation and training. That is the case with Fisher and Demazure and Fisher says, “We had 3 days of training with Dann Demazure, here at our facility and that’s really all it took, a couple days and we were ready to go. It was pretty mind blowing to have the machine land and the next day we were cutting parts.”

Hudson's Mechanical Engineering Technologist, Cam Fisher with the DATRON MLCube that has been critical to the company's innovation and its ability to bring a next-generation line of boats to market.
Hudson’s Mechanical Engineering Technologist, Cam Fisher with the DATRON MLCube that has been critical to the company’s innovation and its ability to bring a next-generation line of boats to market.

The initial installation included the integration of HSMWORKS which Hudson had purchased at the same time as the DATRON machine. Fisher comments on the ease of integration, “In addition to bringing in the DATRON we also brought in 3D CAM software which we had never used before. We were outsourcing everything, so even if we did a mold in house we were still outsourcing all of the programming. We went with HSMWORKS because we’re heavily SolidWorks-based here. The post that came with HSMWORKS for DATRON couldn’t be better. I was coming in a bit green with just some experience with 2D flat parts, but after running it for a little bit, I think I could train somebody else in 2 days to use this machine even if they’d never seen a DATRON before … or never even seen a CNC machine before. It’s THAT easy!”

Download DATRON MLCube Large Format Milling Machine Brochure

Step Stencil Milling vs. Laser and Chemical Etching

Milling step stencils from stainless steel sheet stock using high-speed CNC

There is no question that electronics are getting smaller and smaller. As a result, electro-mechanical parts like Printed Circuit Boards (PCB), must be produced in smaller sizes. Therefore, the demand for step stencils (for stencil printing) is increasing, as well as the requirement for precision and accuracy in order to produce them with intricate detail. This Blog is about Step Stencil Milling and the advantages of this process over both Laser Cutting and Chemical Etching.

If you are not familiar with step stencils, they are metal sheets that help to control the volume of solder paste applied to specific components or features of a printed circuit board during the solder paste printing process. Because PCB’s are getting smaller and smaller, the components that populate the board have to be positioned closer and closer together. So, you can probably see the challenge here – smaller components and tighter spaces demand accuracy.

Step stencil milled on a DATRON high speed milling machine using integrated vacuum table workholding.
Step Stencil milled from stainless steel sheet material on a DATRON high-speed milling machine

Milling vs. Laser for Step Stencil Production

Here’s where milling comes in … and more specifically the demand for very precise high-speed milling machines.  Step stencil material such as stainless steel sheets can be milled with slots and other features to reduce the thickness in desired locations. The depth of these slots (known as “steps”) need to be very precise as does their location. This is where high-speed milling has a significant advantage over laser cutting – because laser has less accuracy as well as restrictions in depth in terms of accuracy. With laser cutting, as you go deeper in the material, the laser (an intense beam of monochromatic light) tends to bend or walk. Whereas with a high-speed milling machine very precise and even depths can be maintained. As an example, the DATRON M10 Pro has a +/- 5 micron position accuracy with <3 micron runout when using HSK-25E tool holders. If you have a need for a very large work area to produce a large step stencil or many step stencils from one sheet of material, the DATRON MLCube LS (with linear scales) delivers the same kind of accuracy and provides a 60″ x 40″ work envelope.

Milling vs. Chemical Etching for Step Stencil Production

The other process used to produce step stencils Chemical Etching. In this process, stencil material such as stainless steel is made thinner in selected areas with chemical etching. All areas that will not be made thinner (or etched) are covered with a protective film. Chemical etching is a less accurate process but is very fast. The problem is the cost and quite frankly the mess. By nature (and law), chemicals have to be managed carefully and disposed of properly, which can be very costly for the manufacturer.

Step stencil design in CAD/CAM software for the CNC milling process.
Step Stencil Design for High-Speed CNC Milling

High-Speed Milling Advantages for Step Stencil Production

So, getting back to the high-speed milling process, the focus should be on achieving the best production quality while saving time and obtaining a damage and residue-free stencil underside. Our customers have found that the combination of integrated probing and vacuum table workholding yield a perfectly reproducible quality, despite any material tolerances … and result in a residue-free stencil underside.

Vacuum table used on a DATRON high-speed milling machine for step stencil production.
Vacuum Table used for holding stainless steel sheet material during step stencil production. Sacrificial layer allows you to mill through holes without damaging the vacuum table.

The integrated vacuum table is ideal for holding flat substrates like stainless steel sheets during the milling process. Plus, job setup is incredibly fast. The integrated probing adds to the speed of setup because the probe is used for automated part location. Additionally, the probe is used for surface scanning which records any variance in material thickness so that variance can be automatically compensated for in the milling program. This means that the depth of milled features (or steps) on the stencil will be deadly accurate!

  • Time Savings: faster than laser
  • No thermal degradation of the material structure
  • Absolute and constant accuracy in rapid removal of material
  • No costly chemicals, or chemical disposal

Download DATRON M10 Pro for Step Stencil Production Brochure

Small CNC Investment Yields Huge Advancement

Aluminum parts batch milled from aluminum stock using a DATRON neo high speed milling machine.

In 1985, Danny Strippelhoff became a partner in the business that his grandfather established in Georgetown, KY in 1943. Now, he oversees the day-to-day operations of the Carbide Products, Inc. as President/CEO. In 1987, another of the founder’s grandsons, Paul Strippelhoff, joined the business and now oversees all manufacturing operations as Vice President.

Today, Carbide Products, Inc. owns and maintains a 15,600 sq. ft. climate-controlled facility and serves more than 200 diversified industrial customers in 26 countries each year. They employ highly-skilled personnel using the most advanced equipment to manufacture made-to-order parts, tools, and gauges, using a wide variety of materials and material combinations. This includes solid tungsten carbide, carbide tipped, silicon carbide, silicon nitride, high-speed and tool steel, stainless steel, super alloys, samarium-cobalt rare-earth, cast iron, other ferrous and non-ferrous alloys, heavy metals, PCD (polycrystalline diamond), PCBN (polycrystalline cubic boron nitride), and plastics. All of Carbide Products machining processes, as well as heat treating, brazing, assembly, inspection, and documentation, are performed in-house for total quality control.

Carbide Products, Inc. uses a DATRON neo compact high-speed CNC milling machine for batch milling small aluminum parts
Carbide Products, Inc. makes use of an original structure built in 1958 as part of their 15,600 sq. ft. facility in Georgetown, KY.

In particular, the company is adept at producing small runs of very small parts to exacting tolerances with requirements for superior surface finishes. According to Paul Strippelhoff, “Most of our jobs are 2- to 50-piece runs and in terms of size, in many cases, you can hold a dozen parts in the palm of your hand.” Often their customers provide them with prints and the job is quoted based on that print. But, Strippelhoff explains, “Sometimes we ask the customer if we can change the print a little bit to make it easier to manufacture. We work closely with all of our customers to save them money and save us time.”

In 2016, a unique job came in that the company hadn’t seen or heard of before. An equine podiatrist asked them to manufacture special aluminum horseshoes including corrective horseshoes for horses with hoof or gait problems and horseshoes for yearlings in the thoroughbred racing industry. According to Strippelhoff, “We were getting some pretty big orders for a local equine facility, and our VMCs were just not fast enough. So, we were looking for something different, something easy to program and control, and with faster feeds and speeds in aluminum.”

During their research to find the ideal machine for this project, they came across the DATRON M8Cube, a German-engineered high-speed milling machine with a 40”x30” work area and spindle speeds up to 60,000 RPM. Strippelhoff says, “It just seemed perfect for the horseshoe job. Additionally, we had a date stamp screw job for the mold industry that we had earmarked for the M8Cube.”

Carbide Products has the DATRON M8Cube earmarked for milling aluminum parts.
DATRON M8Cube high-speed milling machine initially researched by Carbide Products for machining aluminum parts.

A trip to IMTS in Chicago in September 2016, solidified the company’s excitement about DATRON technology, but what they saw exhibited by DATRON altered their plans just slightly. Strippelhoff explains, “They were demonstrating a smaller machine called DATRON neo and the newer touch-screen control on that machine just blew us away. Our kids these days are using their fingers on touchscreens to do everything! We decided, that we really had to get one of these in our shop and be on the front end of this technology and embrace it.”

Carbide Products purchased the DATRON neo almost as an experiment, but with their long-term goals still focused on larger DATRON machines. Strippelhoff says, “We decided to get started with the DATRON neo in hopes that the same software and touchscreen would be added to the M8Cube and M10 Pro machines so that we could replace our traditional VMCs with those. The price point on the DATRON neo was good and it doesn’t take up much floor space, so it gave us a chance to get involved with DATRON and see if we like the support that they have and the product that they have without making any huge investments.”

Job shop uses a DATRON neo to get started with high speed machining of aluminum.
Paul Strippelhoff’s son, Peyton, is among the 4th generation from the family to work at Carbide Products, and the first generation to use the DATRON neo.

This “experiment” has turned out quite well according to Strippelhoff who was surprised that even the DATRON neo with its 20.5″ x 16.5″ X, Y travel has been able to supplant the company’s smaller Haas machines. He explains, “Currently, we’re making some special lightbulb parts on the DATRON neo that we were making on our Haas Super Mini Mills − and by using the vacuum chuck to hold sheet material on the neo, we’re able to batch machine these parts which has reduced cycle time by nearly 50%.” During the course of purchasing and installing the machine, Carbide Products has been able to get a feel for the American-based service that DATRON offers to support their German-made machining centers. Strippelhoff says, “Our plan to ‘get our feet wet’ with DATRON has worked out well. On a scale of 1-10, I’d give their support a 10 … it’s been really, really great. So, we’re excited now to get into that M8Cube. Everybody there has always been Johnny-on-the-spot and available.”

In terms DATRON neo’s overall ease-of-use, and the ability to quickly setup the machine and integrate it into the production flow, Strippelhoff is extremely pleased and admits, “Honestly, I haven’t personally programmed a CNC mill or written a program or anything for 22 years, and I was able to use this machine right away. The controller with the integrated probe and camera system for part location makes it incredibly easy to set up a job and operate. You don’t have to have your workpiece set up and trammed in, it does the skew alignment for you.” Although Carbide Products had never used HSMWorks before, Strippelhoff praises DATRON for strongly recommending this software, as well as how well it integrates with the DATRON neo in terms of tool libraries. He explains, “What I didn’t know upfront, but was glad to see, is that there’s a tool catalog in HSMWorks for DATRON and all we have to do is plug in a 5-digit number, drop the tool in and all the information is there which is so simple it’s crazy.”

Ultimately though, the “proof is in the pudding” as they say, and all the bells and whistles in the world amount to nothing if the machine isn’t making money for you. Strippelhoff says that is NOT the case with the DATRON neo. He explains, “I currently have 6 different 200-piece jobs running on the DATRON neo all being made with aluminum sheet material. Running multiple parts out of a sheet is completely new to us, instead of making solid-piece parts one up. What this does is gives you the ability to keep your number of tool changes down over a 200-piece order, because while your tool is in the spindle it does all of its work.” As an example, he says, “I’m getting 105 parts out of a sheet and the drill is going to drill all the holes before the machine makes a tool change – and then the machine doesn’t have to pick the drill up anymore. Reducing the number of tool changes has a huge impact on cycle time and this is a big difference between the DATRON and our VMCs.”

The DATRON neo is compact high speed milling machine that is reducing some of Carbide Products cycle times by 50% over the Haas Super Mini Mill.
Evan, Danny Strippelhoff’s son, shows off a batch of small aluminum parts being batch machined on the DATRON neo.

At the time that DATRON introduced the DATRON neo to the North American market, it was met with some skepticism on social media forums – mostly by traditional VMC operators who couldn’t imagine that this compact machine was anything but a toy. Within Carbide Products, this has not been the case. Strippelhoff says, “The other machinists in the shop walk by the DATRON neo and they kind of take a step back and are pretty impressed with what they’ve seen so far compared to running their VMCs. They can’t believe the technology that they’re seeing on this machine. Everybody in the shop is excited about it, even the people who aren’t running CNC mills – the lathe guys, guys and gals in the grinding department, everybody just loves watching that thing run.”

Innovative manufacturers logically find innovative ways to use new technologies — sometimes pushing the limits or using a machine for a process that it was not specifically designed for. That is certainly the case with Carbide Products, and they quickly found a unique use for the DATRON neo that further leverages their capital investment. In this case, they decided to replace the cutting tool with a diamond grinding wheel to use the DATRON neo like a jig grinder to grind a counter bore in solid carbide rolls. Paul says, “This was a task for our very expensive Agie Sinker EDM, but this too has changed.” Some manufacturers find it hard to think outside the box — and when they spec a machine for a job, that’s the job the machine will do until it’s at capacity, and then, they buy another machine to pick up the slack. But, Carbide Products’ methodology is to find every imaginable way to use a piece of equipment even if it means reaching capacity quicker. Strippelhoff says, “Another DATRON, probably the M8Cube, is on the horizon anyway. It has a larger bed size and that will come in handy. And if we do things right, that machine will be as busy as the DATRON neo is.”

The counter bore in this solid carbide roll was ground with a DATRON neo outfitted with a diamond wheel.
A solid carbide roll with a counter sink bored by the DATRON neo outfitted with a diamond grinding wheel. Not a typical DATRON neo job, but one that Strippelhoff says the machine is very good at.

As the example above illustrates, it is not simply the technology that drives innovation, but rather the skilled personnel who find the best ways to use it to impact efficiency, capability and ultimately the company’s bottom line. Carbide Products President/CEO, Danny Strippelhoff, says, “It takes the best of the best employees to be successful enough to have the opportunity to invest in the latest and greatest manufacturing technologies. The DATRON neo that we’ve installed is a testimony to their hard work.”

Learn More about the DATRON neo Machine:

Download DATRON neo Brochure

Sign Engraving with CNC Machine, Including ADA Braille!

Sign engraving expert, Bill Rogers is the Director of Manufacturing for Ellis & Ellis Sign Systems.

Since the equipment our company offers is ideal for sign engraving and processing flat sheet material, we’ve seen the inside of a good number of sign companies over the years. But, walking into Ellis & Ellis Sign Systems in Sacramento, CA becomes a different experience as soon as you pass through the lobby and corporate office of this family-owned business. That’s because the overall size of the place is impressive. Well, it has to be really, considering the work they do – this includes billboards, architectural signage, landmark signs, amusement park signs and even those dazzling neon jobs enticing patrons at the many casinos in Reno. They even made a 16-foot tall Tyrannosaurus Rex, a gigantic Frankenstein and a not so menacing (but still sizable) Curious George for Universal Studios.

Monument sign making is one of the primary focuses of Ellis & Ellis Sign Systems in Sacramento, CA
Monument Sign Making is a focus of Ellis & Ellis which is illustrated by this sign made for Slate Creek Corporate Centre in Roseville, CA

But not everything they do at Ellis & Ellis is so big. Take for example the Braille required for way-finding signs and architectural signage. This is intricate work often done on smaller signs that must be ADA compliant for elements like position and tactile height. Braille can be produced using a variety of different processes. For example, Photopolymer Braille uses UV light and a chemical process to remove negative space material. In contrast, Route-in-Place with Raster Braille is a process where small acrylic beads are mechanically pressed into predrilled holes.

Sign Engraving with ADA Compliant Braille

Having tried both of these processes, Ellis & Ellis experienced significant obstacles as follows:

Photopolymer Braille: First and foremost, the Braille was not completely round and was, therefore, subject to ADA liability. They also found the necessary raw materials to be expensive. Ellis & Ellis Director of Manufacturing, Bill Rogers, explained, “The excessive costs of the materials were compounded by costs associated with the human labor required for processing and finishing.”

Route-in-Place with Raster Braille: Similar to Photopolymer Braille, Ellis & Ellis found that additional human labor was required for finishing in the Raster Braille process because of the excessive glue that remains after tactile copy is placed and engraved. Bill Rogers said, “Additionally, the alcohol, solvents and cleaning products would cause crazing to occur on the acrylic beads which often shattered them.” Plus, they found this process to be limited in terms of surface finish possibilities.

Eventually, Ellis & Ellis decided to research other processes and equipment to produce the intricate ADA compliant Braille they needed to manufacture these way-finding signs. Ultimately, they decided on a DATRON M8 high-speed machining center after demonstrations proved that the machine was not only capable of producing spot-on Braille, but could also perform many other functions – thereby adding flexibility to their shop floor. (See aluminum and acrylic letters at bottom of Blog).

Engraving braille signs to meet ADA requirements led Ellis & Ellis to DATRON to purchase an M8 Engraving machine.
Engraving braille signs was the requirement that led Ellis & Ellis to DATRON and resulted in the purchase of an M8 high-speed milling machine.

Plus, there were other factors involved in their decision. Rogers said, “Well clearly floor space in California has a premium cost associated with it and the DATRON’s footprint fit nicely into the small enclosed space that we designated for this process.” He added, “With the small footprint, it’s amazing that this machine provides such a large work envelope.”

Sign Engraving CNC Machine for Batch Machining

In fact, the DATRON M8 (as well as the newer M8Cube) has a 40” x 32” machining table made of solid polymer concrete that provides exceptional rigidity delivering the accuracy that Ellis & Ellis needs. The large work envelope is not diminished by the 15-station automatic tool changer located at the back of the table. This covered pneumatic unit includes a tool-length sensor which allows Ellis & Ellis to monitor tool life as a means of maintaining a high level of quality. In many cases, the signs that they manufacture are produced in batches and the tool length sensor helps in allowing them to run these parts unattended. Here’s how it works. Within the machine’s control software is a macro program that can be set up to run a tool check after executing a number of lines of code. For instance, a tool check macro can initiate a check after every 500 lines of code. This is known as an “if/then” statement, in other words, “Measure this tool; if the length is shorter than the listed parameter, then change the tool.” As a result, if a tool becomes dull in the middle of running a batch of signs, it is replaced automatically even if the machine operator is not present. This helps to maintain quality and minimize waste.

Sign engraving machine DATRON M8 features a 60,000 rpm spindle, 40" x 30" work area, vacuum chuck and integrated probing.
Sign engraving CNC machine, DATRON M8, features a 60,000 rpm spindle, 40″x30″ work area, vacuum table workholding, and probing for quick job setup and part location.

However, running batches of signs, whether unattended or with the operator present, requires the ability to accommodate and fixture sheet material from which the individual signs are milled. So, Ellis & Ellis was pleased to find that DATRON manufactures their own vacuum table workholding. In the case of their M8 machine, the vacuum chuck is affectionately known as a QuadraMate due to its four independently activated 12” x 18” segments – which can also be simultaneously activated providing a full 24” x 36” of workholding.

Bill Rogers said, “The vacuum table combined with the machine’s integrated probe makes it so easy to set up a job – it’s faster and takes out the element of human error.”

Sign Engraving samples made by Ellis & Ellis Sign Systems on a DATRON M8 high-speed machining center.
Sign engraving samples at Ellis & Ellis show the versatility of the DATRON high-speed milling machine.

That’s because once the operator sets the material on the table, even if it is not situated perfectly straight, the probe takes measurements that compensate for that. In fact, even if there are irregularities in the material such as surface variance, the measurements are fed into the control software and the program is adjusted accordingly. Since Ellis & Ellis performs so much alphanumeric engraving and milling to produce their signs, this guarantees an even depth of those characters even if the material topography is not consistent. According to Rogers, “All of this equates to more efficiency, higher quality, less waste and ultimately cost reduction.”

Sign engraving aluminum and plastic (acrylic) lettering can be performed in batches due to the 40" x 30" work area on the DATRON M8.
Sign engraving in acrylic and plastic was a necessity for Ellis & Ellis and with the DATRON M8 they are also able to run batches of aluminum and acrylic lettering of all shapes and sizes.

The machining center itself is not the only area where DATRON has helped Ellis & Ellis add efficiency to their operation — and Bill Rogers says that they have become quite a proponent of DATRON solid carbide cutting tools. “We saw the exceptional performance of DATRON tools being used with the DATRON machine in terms of cut quality and tool life, so we decided that we’d give them a try on some of our larger machines.” Those larger machines include MultiCam CNC Routers, and as they anticipated, the DATRON tools did, in fact, improve the performance of those larger machines. Bill said, “In terms of tool life, we’re looking at an improvement of about 3 to 1 which is a big cost saving over time.”

Sign engraving CNC routers like these MultiCam machines can produce better results when using DATRON cutting tools for a better cut quality and longer tool life.
Sign engraving CNC router by MultiCam is equipped with DATRON solid carbide cutting tools for better performance and a 3-to-1 improvement in tool life.

In addition to using DATRON tooling with the MultiCams, they also decided to try DATRON’s coolant with these routers and that too helped to impact cutting quality.

Bill Rogers said, “Staying competitive means trying new things, new technology, and always looking for ways be more efficient.” To that end, Bill and his team are frequent visitors at the DATRON Technology Center in Livermore, CA. According to Rogers, “DATRON has informal events like TechDay at their facility where we can go see advancements in the technology. I can always count on their guys to get us the answers we need. It’s a great partnership.”

Download DATRON M8Cube Brochure:

Rapid Prototyping: Subtractive vs. Additive

Additive vs subtractive rapid prototyping may be a matter of knowing which process best suits your needs since both have their place

With additive manufacturing and 3D printers being such a hot topic these days, it’s important to remember why subtractive processes like milling are still incredibly important to rapid prototyping. But first, let’s examine some of the benefits and limitations of additive rapid prototyping (or direct digital manufacturing).

Benefits of Additive Rapid Prototyping

The process of additive rapid prototyping joins and fuses materials like liquid resins together, layer upon layer to produce a 3D object from model data. Additive rapid prototyping is generally simple, relatively inexpensive and fast. Additive rapid prototyping also allows for a substantial amount of complexity within cavities or internal areas of a part that would require undercuts and may even be impossible with subtractive processes like milling.

Limitations of Additive Rapid Prototyping

The primary drawback of additive rapid prototyping is that the resulting part usually is not made of an end-use material like metal … and even if it is, it lacks structural integrity. That’s because the point where one layer is joined to another lacks the physical strength exhibited by a solid block of the same material (with no layers or joints).

Subtractive Rapid Prototyping with End-Use Materials

Subtractive rapid prototyping provides the ability to prototype in end-use materials. Since milling or machining removes material from a larger piece of material, the finished part has a solid composition rather than a layered composition as seen in additive rapid prototyping with 3D printers. This yields a higher structural integrity which is critical if the prototype part is to be used in product testing. Product testing with a part made through subtractive prototyping allows for an accurate analysis of the part’s viability and even durability since it is made from the same material that will be used to manufacture production parts.

A Wider Range of Surface Finishes and Textures with Subtractive Prototyping

Subtractive rapid prototyping processes also offer a wider range of surface finishes for the completed prototype as opposed to the standard “stepped finish” often achieved in additive rapid prototyping with a 3D printer. This could range from a completely smooth surface with a mirror-like finish to ones with milled or engraved textures. In this way, subtractive rapid prototyping with a high speed CNC milling machine is capable of producing prototype parts with a repeatability suitable for end-use production. The smooth surface finish that can be achieved with high-speed machining can be functionally beneficial if the given part needs to slide and aesthetically beneficial if the prototype is going to be used in market testing.

Additive Rapid Prototyping vs. Subtractive Rapid Prototyping

To illustrate the points made above, we asked our applications engineers to quickly prototype a part using both additive and subtractive processes. Since our favorite after-hours (wink, wink) past time is foosball, they decided to make a “replacement” foosball man for testing. This decision was based on an actual real-life need – since we had recently broken one of the men that came with our vintage 1985 foosball table. Using additive rapid prototyping (3D printing), they were able to design a very rudimentary foosball man in about 90 minutes. From there, they began printing and in just over an hour the part seen below was complete.

 

Additive rapid prototype made with a 3D printer to compare to a similar subtractive rapid prototype made with a high speed milling machine.
Additive rapid prototype made with a 3D printer shows the typical stepped finish indicative of this process.

 

Using subtractive rapid prototyping (high-speed milling) programming the part took substantially longer and clocked in at 3 hrs. 45 minutes. However, milling the part below was considerably faster than 3D printing and took 28 minutes.

 

Subtractive rapid prototyping processes like machining tend to offer more flexibility in terms of surface finish as well as the ability to prototype in end-use materials that are superior for product testing.
Subtractive rapid prototype showing a smooth surface finish and a solid composition that delivered greater functionality.

 

Product Testing an Additive Rapid Prototype vs. a Subtractive Rapid Prototype

Well, you knew we had to “test” the part right? So, in a series of 4 rather heated games using each prototype, here’s what we found. In terms of functionality and durability, the subtractive prototype was the clear winner. Not only did it last through the 4 games, the solid composition of the part made for stronger shots with high velocity. Plus, it clearly would hold up for hundreds of more games. By comparison, the 3D printed part began to show signs of delamination on its right side half way through game 3 — and by the game 4 we had to mend it with a bit of scotch tape to get through the rest of our “product testing”. The damage to the part revealed the inside composition of the 3D printed part as seen below.

 

Additive rapid prototyping using 3D printing can be fast, but less functional in terms of product or market testing due to both aesthetics and their non-solid composition.
Cross section of 3D printing prototype shows internal construction.

 

The rather hollow nature of this part shined a bit of light on why we couldn’t achieve strong shots using this foosball man. In analyzing the resulting surface finish on both parts, we felt that the subtractive prototype was … well, simply more attractive. Plus, the milling process provided more flexibility to achieve different surface finishes. For example, we were able to make the majority of the subtractive prototype very smooth while giving the foot section a more textured finish for added “grip” or ball control. By contrast, the inherent “stepped” surface finish on the additive prototype served well in terms of ball control … but wasn’t very attractive over the entire part.

The Ultimate Subtractive Rapid Prototyping CNC Machine:

Last year’s introduction of the DATRON neo compact high-speed milling machine makes subtractive rapid prototyping more affordable and viable than ever. Plus it’s compact size and touchscreen operation make it easy to use and easy to fit in the tightest “lab-type” environment. To learn more download the brochure by filling out the form below:

AUTODESK Fusion 360 CAM Challenge – DATRON’s Adrian Montero Wins Best Surface Finish

Fusion 360 CAM Challenge won by DATRON's Adrian Montero using a DATRON neo high speed milling machine.

When an Autodesk Fusion 360 Product Manager put out a “key chain challenge” to see who could produce the best quality sample part, many CNC machinists on social media took note and got right to work.

Fusion 360 part being programmed with Autodesk Fusion 360 CAM software by Datron's Adrian Montero.
Fusion 360 Part being programmed by DATRON Application Technician, Adrian Montero.

Appropriately named the AUTODESK Fusion 360 CAM Challenge, participants were asked to produce a Fusion logo made into a key chain.  Autodesk supplied all participants with the same file in their software. There were only 3 requirements to the Autodesk Fusion 360 CAM Challenge:

  • Use Autodesk Fusion 360 to program
  • Take a photo of yourself programming the part
  • Supply a photo of the final end product
Fusion 360 CNC milling performed on DATRON neo high speed machining center.
Fusion 360 CNC milling challenge on DATRON neo, compact high-speed mill.

All participants of the Autodesk Fusion 360 CAM Challenge were given 1 week to complete their sample parts and submit their photos. In that week 56 people participated and tagged 152 photos that were viewed by 129,000 people.

Fusion 360 CNC machining challenge won by Adrian Montero who used a DATRON neo high speed milling machine.
Original Fusion 360 key chain next to the one milled in acrylic on a DATRON neo by Adrian Montero.

DATRON Dynamics Application Technician, Adrian Montero won the Autodesk Fusion 360 CAM Challenge in the Category of Best Surface Finish. His part was machined on the DATRON neo, compact high-speed milling machine.

Learn more DATRON neo download the brochure:

Nameplate Manufacturer Calls DATRON Source of Efficiency

Nameplate milling and engraving at Willington Nameplate is performed with DATRON high speed milling machines

Willington Nameplate in Stafford Springs, CT manufactures metal engraved nameplates and Identification tags for a wide range of customers from aerospace and defense to Gillette Stadium – they actually produced all of the seat tags for “Casa de Brady”. Their metal nameplates and ID tags are made from a range of materials including aluminum, brass and stainless steel.

Willington Nameplate was founded over 50 years ago by Marcel Goepfert and day-to-day operations have been run by his son, Mike Goepfert, since 1990. Since that time, there have been many changes and a lot of growth. This includes a critical decision in 1999 to purchase their first DATRON high-speed milling machine.

Nameplate milling including control panels, data plates and dials is performed at Willington Nameplate on their DATRON high speed machining centers.
Nameplate milling at Willington Nameplate includes control panels, data plates and dials.

Willington Nameplate’s Fabrication Group Leader, Jamie Vale Da Serra, recounts this story saying that, “Prior to installing the DATRON machine we used a manual kick process.” He goes on to say, “We needed to get away from that process because we needed a tolerance higher than .005”. Vale Da Serra refers to the DATRON milling machine as a “set it and forget it” piece of equipment that runs unattended freeing up staff to attend to other tasks.

Nameplate engraving and milling at Willington Nameplate is performed on DATRON high speed milling machines that can run unattended.
Nameplate machining by Willington Nameplate is optimized by DATRON features like vacuum chuck workholding, probing and automatic tool change – resulting in their ability to run this machine unattended.

Quick job setup and the ability of the DATRON machine to run unattended are the result of a number of integrated features – all operating in concert. This starts with integrated vacuum table or vacuum chuck technology that allows the operator to quickly setup the workpiece – for nameplates this is generally sheet material such as aluminum, stainless steel or Metalphoto®.  An integrated probe for part location and measurement also speeds up job setup and enables uniformity by automatically compensating for material irregularities like surface variance. An automatic tool changer with an integrated tool-length sensor provides a full stable (and wide variety) of necessary tooling that can automatically be changed at given intervals and/or when a tool is broken.

Nameplate machining by Willington Nameplate is done with their DATRON CNC mills and produces labels, tags and UID marked nameplates.
Willington’s nameplate machining yields labels, ID tags and UID marked tags.

Vale Da Serra says, “Consistency is there with the DATRONs from the first to the last they all measure the same, whereas with the manual process human error is possible that could give you a deviation.”

The growth at Willington Nameplate is not limited to adding DATRON machines, the company has recently purchased three other companies in New England, thereby expanding sales by 35% in five years. With a staff of more than 80 people, Willington Nameplate has now set their sights on additional acquisitions elsewhere in the United States.

Learn more about Nameplate Production download the White Paper:

In Their Own Words – Engraver, DC Graphics – Talks DATRON Milling & Engraving Machines

Engraving brass embossing dies is an application that benefits from the integrated vacuum table on DATRON high speed CNC engraving machines.

DC Graphics, founded in ’94 by Kevin Brandon, is run today by Eugene Prohaske, President, and Kristine Brandon, Vice President, and has a long history in the engraving industry. Eugene is a passionate engraver and has over 30 years of experience in the engraving for packaging industry. He originally started in the engraving business with his father’s company, Styleart Engraving back in 1983. After his father retired in 1994, Eugene started his own business, HAP Engraving in Manhattan, together with a partner. They were in business until 2010 when he came to DC Graphics. Eugene originally joined business with Kevin Brandon, former President and original founder of DC Graphics. They worked together for about three years before Kevin passed away in 2013.

Engraving machine made by DATRON in Germany is used by DC Graphics to engrave plates, stamps and dies for the graphic packaging industry.
DATRON engraving machine used by DC Graphics in Farmingdale, NY to engrave plates, stamps and dies for the graphic packaging industry.

DC Graphics is an offset, flexographic pre-press, plate/die making and photoengraving facility, which produces magnesium and copper plates/engravings as well as CNC milled brass plates. DC Graphics, specializes in producing sculptured embossing dies and engravings, flat stamping and folding cards for the paper packaging and pre-press industry. They employ a staff of approximately 16 people.

Magnesium is a metal plate that can withstand high temperatures and is impact resistant as well.  Embossing and foil-stamping both require a plate that can meet these criteria for long press runs. Magnesium plates are also used to make rubber plates, signs and name plates; a versatile product indeed. Its durability provides the end user with a long-lasting printing image or die. Plates come in different thicknesses: 16 gauge, 11 point, and 1/4′.  The largest size is 18″ x 24″.  Copper is also used because it is a harder metal that lasts and stores longer for a better quality product. Counters for their embossing and debossing dies are available in both .030 and .060 thicknesses. They can also create fast and accurate brass dies to a customers’ exact specifications with CNC machining.

Known for engraving embossing dies, DC Graphics uses a DATRON CNC engraving machine for their work in the graphic packaging industry.
DC Graphics is known for engraving embossing dies like this intricate butterfly engraved on their DATRON machine.

DC Graphics is constantly seeking new innovations and utilizes the most current technology in its industry.  Having access to the latest technologies keeps DC Graphics ahead of their competition by allowing them to work more productively. Their state-of-the-art equipment allows them to provide their clients with high-quality products faster and less expensively than their competition. Before DC Graphics purchased their first DATRON high-speed milling machine, everything was done by hand, gauging machines and etching. But etching proved to be dirty and carried additional costs associated with disposal of the chemicals used in the process. They knew that they needed a change.

So, in 1996, DC Graphics purchased their first DATRON machine (an M4) and made a transition from everything being done by hand, gauging machines and etching and began using CNC milling machines. It was a big undertaking but proved to be a smart decision for DC Graphics to go green and DATRON was the perfect solution for that.

Prohaske says, “Once I saw everything, I decided this was the wave of the future for us and if we didn’t make the change when we did more than likely we wouldn’t been in business anymore.”

Engraving brass dies that produce graphic packaging for Yves Saint Laurent is and application performed on Datron CNC engraving machines by DC Graphics in New York.
Here you can see how engraving brass dies translates to graphic packaging for Yves Saint Laurent.

In 2008, DC Graphics purchased a DATRON M8 high speed milling machine, followed by and two additional M8s (in 2012 and 2013) to get their engraving jobs done quicker and to handle more business for their customers.

According to Prohaske, “At the beginning it was a big learning curve because we needed to get the machines in and had to figure out how to run them. DATRON definitely walked us through it as a real partner would do.”

It was a natural progression of having one machine and getting a second one soon. At this time, they had one DATRON and one LANG.  They took one year to evaluate the two machines and started weighing the pros and cons of both machines.  Both are reliable and good German-engineered machines, but the service and support in the U.S. provided by DATRON Dynamics was a major part the decision to get more DATRON machines.

“They are in the States and whenever I have a problem, they help me and respond to an issue right away. Having a contact person and service over here is key because if I need a part or help figuring out what the problem is or what needs to be replaced, I can get the part the next day; worst case scenario being two days.” says Prohaske.

Prohaske continues, “I always have good experiences with DATRON. They always treat me with a lot of attentiveness and they always help me to get through an issue and give me guidance. I respect that and know I can trust them!  Moving forward with the business and growing by getting more machines, it was just a logical decision to continue with DATRON. For what we need, DATRON is the best machine. The machines work fantastic because they’re very versatile and don’t break down. They last for years.”

Now, DC Graphics uses the DATRON machines for most of their projects. They run their LANG for flat stamping plates only because it has a smaller table and only an eight-station tool holder compared to the DATRON, which has a 15-station tool changer and larger table. The DATRON gives them more options in terms of creative engraving, which requires a high level of expertise and flexibility of the machine.

“It is just a very nice machine to work on.  I do a lot of programming for the creative engraving and I am very familiar with the DATRON. My engraving creativity combined with the opportunities a DATRON machine offers is a good melding and these different factors coming together make a product that comes out quick, clean and reliable.” Prohaske says.

Prohaske prefers using a lot of tools. He uses specific tools with angles, shapes and cuts for engraving that help him to create a die quicker. This versatility helps him to achieve engraving effects he wouldn’t be able to produce if he didn’t have so many tools at his disposal on the machine. He has the engraving expertise to know how to apply the right tools for particular engraving challenges. Creative engraving is part of the front end program process where he programs everything and applies it to run on a DATRON.

 “We really try to maintain a good customer service and engraving expertise – the knowledge of what’s gonna work.  For certain types of engraving you need to know what’s gonna work to get an effect. That’s what people appreciate because they don’t know what to do. They come to me and say what’s gonna make this look like what our customer wants. That’s when you build a good report where they can account on you. You are able to do something that other engravers can’t do. That is you edge! I never want to be known as the cheapest engraver … instead, I want to be known as the place to go when something is difficult. And the reliability of DATRON machines and the fact that I’m familiar with these machines allows me to provide this kind of cutting-edge solution.” – Prohaske says.

Download the DATRON Engraving Machine Brochure:

CNC Guitar – Fender Stratocaster Replica Made on DATRON M8Cube

CNC guitar machining of a Fender Stratocaster replica using a DATRON high speed milling machine.

DATRON AG employee, Marc Reis, made a CNC guitar using a DATRON M8Cube high speed milling machine.  This CNC guitar is a Fender Stratocaster replica with body, neck, electronics pocketing, fret inlays and tuner through holes all milled on this high speed CNC milling machine made by DATRON AG in Germany.

Video of CNC Guitar Milling

For this CNC guitar milling project, Marc was able to leverage many of DATRON’s unique features such as vacuum table workholding used to hold the guitar body during machining. DATRON Vacuum tables are designed to swiftly and efficiently secure flat workpieces to the bed of a machining system. Thin stock, which could be secured only with great difficulty before, can be secured literally within seconds with this vacuum system. This includes plastic foils as thin as 0.001” up to heavier 0.250” aluminum sheets. This vacuum table features airflow-optimized ports, with recessed chambers, to provide superior vacuum distribution. A low cost, gas-permeable substrate serves as a sacrificial vacuum diffuser, allowing the cutter to machine through the workpiece, without cutting into the table.

Also, the ability to clamp long (or tall) parts to front of the cut-away in the M8Cube machine bed facilitated the drilling of a cavity in the guitar neck to accommodate the truss rod. (A guitar truss rod is used to stabilize and adjust the lengthwise forward curvature of the neck.)

CNC Guitar Photo

CNC guitar milling like this Fender Stratocaster replica can be done with high speed milling machines such as the DATRON M8Cube.
CNC guitar milling of a Fender Stratocaster-style electric guitar.

The DATRON M8Cube high speed milling machine features brushless, direct drives that provide faster acceleration, feed rates up to 866 inches per minute and shorter cycle times. A 3kW, 40,000 RPM, liquid-chilled spindle delivers greater horsepower for heavier machining, as well as the flexibility to mill a wide range of materials. To learn more download the brochure by filling out the form below.

Download Brochure on Machine Used to Make this CNC Guitar: